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Why Electronic Design Automation?

0
“Surely the purpose of science is to ease human hardship”

Galileo, Bertolt Brecht

A
= Handle the complexity

= Time to market

m Design optimization

From G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill Higher
Education, 1994.
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Why Electronic Design Automation for security?

m Security is very often considered at later stages
of design

m Cost and Time to Market

m Possible Security pitfalls

EXTRA CONSTRAINT
Use as much as possible “standard” EDA commodities!
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.
m Logic Synthesis (Secure)

m Design Flow for secure ISE

m Quick note on Software
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Simplified Hardware Design Flow (ASIC)

Algorithm Design
C, Matlab, VHDL

RTL (Architecture) Design
Synthesizable HDL

Gate

X
%&OR y
y

Layout

Francesco Regazzoni 06 June 2014, Sibenik, Croatia



Let’s focus on Synthesis

RTL (Architecture) Design
Synthesizable HDL

Logic Synthesis

Gate Level

X
%D(OR y
y
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A bit of history

A
m Few algorithms and tools existed in the 70’s

m First prototype synthesis tools in the early 80’s

m First logic synthesis companies in the late 80’s
-
Design Automation Conference (DAC) turned 51 years last
week: happy birthday!

A\
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Logic Synthesis

is the manipulation of logic specifications to create
logic models as an interconnection of logic primitives

Logic Synthesis
determines the gate level structure of a circuit

From G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill Higher
Education, 1994.
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Logic Synthesis Input and Output
INPUT:

m HDL Description

m Technological Library (area, timing, power)
m Synthetic Library (multipliers...)

m Constraints

m Gate Level Netlist
m Estimation of area, timing, power (!)
m Timing constraints
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Typical Logic Synthesis Steps

State Minimization

two
State Encoding

three
Combinatorial Logic Minimization

four

Technology Mapping
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Is it sufficient for Security?

A
Paul Kocher, Joshua Jaffe, and Benjamin Jun,
“Differential Power Analysis”, in Proceedings of
Advances in Cryptology-CRYPTO’99, Santa

Barbara, California, USA, August 15-19, 1999.

(Cited by 4128)
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Approach One
INPUT:

m HDL Description

m Technological Library (area, timing, power)
m Synthetic Library (multipliers...)

m Constraints

m DPA resistant Gate Level Netlist
m Estimation of area, timing, power (!)
m Timing constraints
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Approach Two

m HDL Description

m Technological Library (area, timing, power)
m Synthetic Library (multipliers...)

m Constraints (limit the gates)

m Gate Level Netlist

“Cell Substitution’':
m Replace cells

m Reload in the tool for correct area and timing constraints

K. Tiri and |. Verbauwhede, A digital design flow for secure integrated circuits, IEEE TCAD,
2006
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As a example of design for security, we have focused
on synthesis, and we have detailed two possible
approaches for synthesis of DPA resistant circuits

However

m f?ynthesis is only one step of the whole design
ow

m Security should be considered in every steps of
the of the design flow

m Doing DPA resistant synthesis alone is not
sufficient!
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m Design Flow for secure ISE

m Quick note on Software
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Protect PRESENT with secure hardware

m Lightweight block cipher

m 4 bit S-box

m addRoundKey, sBoxLayer

// Calculate S-box (plaintext XOR key)

int PRESENT (int plaintext, int key) {

1 int result = 0; // initialize the result

2 plaintext = plaintext “key; // perform the xor with the key
3 result = S[plaintext]; // perform the S-box

4 return result; }; // return the result
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What can | do?

Register File

Lvm ][ B8 4 [ Ad4
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What can | do?
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What can | do?
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What can | do?

Register File

IMM.

ALU

Memory
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What can | do?

Register File

59 (44
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What can | do?

Register File

Lvm ][ B8 4 [ Ad4

Memory
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What can | do?

Something easier?
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Protected / Non Protected Co-Design!

Register File
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Protected / Non Protected Co-Design!

Register File
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Protected / Non Protected Co-Design!

Register File
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Automatic design of DPA resistant ISE

identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive
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identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

m Generate useful power traces?

A\
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identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

m Generate useful power traces?
m Measure the DPA resistance?

A\
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identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

m Generate useful power traces?
m Measure the DPA resistance?
m Countermeasure and its design flow?

A\
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identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

m Generate useful power traces?
m Measure the DPA resistance?
|
|

Countermeasure and its design flow?
Partition the algorithm?

A\
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identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

m Generate useful power traces?
m Measure the DPA resistance?
|
|

Countermeasure and its design flow?
Partition the algorithm?

A\
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Fast Simulation SPICE level

Simulate Complex Design at SPICE level (whole processor)
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Fast Simulation SPICE level
Simulate Complex Design at SPICE level (whole processor)

Simulated about 400 traces: approximately 20 hours!
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Fast Simulation SPICE level

Simulate Complex Design at SPICE level (whole processor)

Simulated about 400 traces: approximately 20 hours!
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Power or Correlation
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A
m Results obtained in simulations are often very
different from the ones obtained from the real
silicon
m Check and evaluate if and to which extent
simulations results are matching the real
measures
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Needed “Basic Blocks”

Partition Protect
Sensitive / Sensitive —
Non Sensitive

m Generate useful power traces? v’
m Measure the DPA resistance?
|
|

Countermeasure and its design flow?
Partition the algorithm?
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identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

m Generate useful power traces? v’
m Measure the DPA resistance?
|
|

Countermeasure and its design flow?
Partition the algorithm?

A\
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Information Theory Metric

H[K|L] = — Z ZPr /Prl|k o] o Yoz el ol

m Add white noise
m Reduce the dimension using compression
m Compute the mutual information
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Partition Protect
Sensitive / Sensitive —
Non Sensitive

m Generate useful power traces? v’
m Measure the DPA resistance? v
|
|

Countermeasure and its design flow?
Partition the algorithm?

A\
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identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

m Generate useful power traces? v’
m Measure the DPA resistance? v
|
|

Countermeasure and its design flow?
Partition the algorithm?

A\
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Protected Logic styles

= WDDL
= iMDPL
= MCML
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identify Partition Security
sensitive parts Sensitive / Evaluation
Non Sensitive

m Generate useful power traces? v’
m Measure the DPA resistance? v
|
|

Countermeasure and its design flow? v
Partition the algorithm?
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identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

m Generate useful power traces? v’
m Measure the DPA resistance? v
|
|

Countermeasure and its design flow? v
Partition the algorithm?

A\
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Algorithm partitioning tool

Register File

Lvm ][ B8 4 [ Ad4
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Algorithm partitioning tool

Register File
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Algorithm partitioning tool

Register File
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Algorithm partitioning tool

Register File
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identify Protect Security
sensitive parts Sensitive Evaluation

m Generate useful power traces? v’

m Measure the DPA resistance? v/

m Countermeasure and its design flow? v
m Partition the algorithm? v
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The CMOS Design Flow

processor HDL code

CMOS
CMOS Library

Synth and
P&R D4

Francesco Regazzoni 06 June 2014, Sibenik, Croatia



The Processor Customization

software processor HDL code
crypto.c

ISE HDL code

CMOS
CMOS Library
Synth and
P&R D 4

crypto_ISE.c
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The Protected Design Flow

software processor HDL code
crypto.c

Protected
Library

Protected
Synth and
P&R

CMOS
CMOS | Library
Synth and 8

ISE HDL code

ISE Extractor

P&R D 4

crypto_ISE.c

101001
100001
100001
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e Hybrid Design Flow

software
crypto.c

processor HDL code

ISE HDL code

ISE Extractor

crypto_ISE.c

CMOS

Protected
Library
Protected —)
Synth and
P&R
CMOS
Library

Synth and

P&R

54

Francesco Regazzoni

June 2014, Sibenik, Croatia



The Simulation Environment

software
crypto.c

processor HDL code

ISE HDL code

Protected

ISE Extractor

crypto_ISE.c

101001
100001
100001

Francesco Regazzoni

Synth and
P&R

Protected
Library
—

CMOS
Library

SPICE level

simulation
—
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e Design Evaluation

processor HDL code

software
crypto.c
Protected
ISE HDL code Library
Protected —
ISE Extractor Synth and
P&R
S CMOS
CMOS Library
Synth and
P&R D 4
S

crypto_ISE.c

SPICE level
simulation

N—

Security
> Evaluaton
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Partitioning of the PRESENT algorithm S-box

Plain Text ‘ ‘ key ‘ ‘ Plain Text Plain Text ‘ ‘ key ‘ ‘ Plain Text
‘ shox ‘ ‘ shox ‘
‘ result ‘ ‘ result ‘ ‘ result ‘ ‘ result ‘
Full CMOS XORISE S-box ISE XOR + S-box ISE full ISE

Legend
non protected protected
logic logic
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Example of ISE and its Source Code

// Calculate S-box (plaintext XOR key)

int PRESENT (int plaintext, int key) {

1 int result = 0; // initialize the result

2 plaintext = plaintext “key; // perform the xor with the key
3 result = S[plaintext]; // perform the S-box

4 return result; }; // return the result
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Example of ISE and its Source Code

// Calculate S-box (plaintext XOR key)

int PRESENT (int plaintext, int key) {

1 int result = 0; // initialize the result

4 return result; }; // return the result

XOR+S-box ISE // Calculate S-box (plaintext XOR key)

int PRESENT _ XOR+S-box-ISE(int plaintex) {

g g 1 int result = 0; // initialize the result

=] =]

< SBOX| =

g (std-cell 4 C:D, // instantiate the new instruction s-box(pt “key)
@ @

= =

2 Instr_1(plaintex, result);

3 return result; }; // return the result
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Security Evaluation
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Security Evaluation
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Total Time for experiments

PC Features:
m CPU: Intel(R) Core(TM)2 Quad CPU Q6700
m GHz 2.6
= Memory: 4 GB

Example program 470 clock cycles (boot+cipher)

SPICE Level Simulation (Synopsys Nanosim resolution: 1ps):
m Total simulated time 4700ns
m Total simulation time more or less 20 minutes
m 2.8s per clock cycle (full processor simulation core+ISE)
Security Evaluation
m 4 hours per partitioning

Full case study

m Worst case: 15 days on a single PC
m Parallelizable! Actual experiment: 2 days on 8 PCs

Francesco Regazzoni 06 June 2014, Sibenik, Croatia



m Quick note on Software
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identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

m Generate useful power traces?
m Measure the DPA resistance?
|
|

Countermeasure and its design flow?
Partition the algorithm?

A\
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Real Measures on Microcontroller

m No need to simulate or emulate

m Power traces are obtained directly by measuring
with an oscilloscope the software running on the
microcontroller
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Needed “Basic Blocks”

Partition Protect
Sensitive / Sensitive —
Non Sensitive

m Generate useful power traces? v’
m Measure the DPA resistance?
|
|

Countermeasure and its design flow?
Partition the algorithm?
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identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

m Generate useful power traces? v’
m Measure the DPA resistance?
|
|

Countermeasure and its design flow?
Partition the algorithm?

A\

Francesco Regazzoni 06 June 2014, Sibenik, Croatia



Same as before....
Applied instruction by instruction!
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Partition Protect
Sensitive / Sensitive —
Non Sensitive

m Generate useful power traces? v’
m Measure the DPA resistance? v
|
|

Countermeasure and its design flow?
Partition the algorithm?

A\
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identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

m Generate useful power traces? v’
m Measure the DPA resistance? v
|
|

Countermeasure and its design flow?
Partition the algorithm?

A\
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Code Transformation

sbol r21,0xfd
1lds r23,708
sbeoi r21, 0xfd mov r2%,r23
14 r25,¥
----------- » |[1ds r23,708
subi rl8,0x4f mov rlB,r23
) 19,r23
Targets for Protection nev lér 26
Exampie (A) P
subi rl8&,0x4f
Protected Implementation
Example (A}
——————————— »-
Targets for Proteciion

Example (B) Protected Implementation
Example (B)
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identify Partition Security
sensitive parts Sensitive / Evaluation
Non Sensitive

m Generate useful power traces? v’
m Measure the DPA resistance? v
|
|

Countermeasure and its design flow? v
Partition the algorithm?
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identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

m Generate useful power traces? v’
m Measure the DPA resistance? v
|
|

Countermeasure and its design flow? v
Partition the algorithm?

A\
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Transformation Target Identification

sbol r21l,0xfd

movw rl8,r2é

X | subi rl8,0xdf

/‘J Targets for Protection
sbei r21,0xfd 7 Exampie (A)
1d r2s,Y R
movw r18,:26
subl rl18,0xdf ~

N

Sensitive Paris S

.

N
.
E Y

Targetis for Protection
Example (B)
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identify Protect Security
sensitive parts Sensitive Evaluation

m Generate useful power traces? v’

m Measure the DPA resistance? v/

m Countermeasure and its design flow? v
m Partition the algorithm? v
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Overall Software Flow

Information Transformation
Code
Leakage Target .
/ o Transformation
Analysis Identification
sbei r21,0xfd
1lds r23,705
sbei r21,0xfd mov r25,r23
1d r25,¥
---------- > |[1as 23,705 |
/X subi r18,0x4f mov rl8,r23
L & Targets for Protection :ZZJS;E 6
sbei r21,0x£d sbei r21,0xfd L Example (A) subi rl8,0x4f
igv;fg . . ;ivzzii;‘ o6 o7 Protected Implementation
subi rl8,0x4f subi rl8,0x4f N Example (A)
Input Software Sensitive Parts \\
Implementation NS E]
* e - 5
Targets for Protection :l
Example (B) Protected Implementation
Example (B)
P. 73
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Example on Software

Instruction - time mapping of unprotected implementation
1

[ T © Y -
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Sensitivity
(Mutual information)
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Instruction - time mapping of unprotected implementation

Instruction - time mapping of protected implementation
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Security Evaluation

Sensitivity values for protected implementation
T T
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Conclusions and Tips

m Initial steps for power analysis are promising

m This is just the beginning...

PS: Never re-invent the wheel! J
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A
“There is beauty in what we do in EDA!”

Alberto Sangiovanni-Vincentelli, EDA Café - 2009

o'

Thank you for your attention!
mail: regazzoni@alari.ch
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