Bricks and Tools for Secure Hardware

Implementations

Francesco Regazzoni

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Why Electronic Design Automation?

0
“Surely the purpose of science is to ease human hardship”

Galileo, Bertolt Brecht

A
= Handle the complexity

= Time to market

m Design optimization

From G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill Higher
Education, 1994.

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Why Electronic Design Automation for security?

m Security is very often considered at later stages
of design

m Cost and Time to Market

m Possible Security pitfalls

EXTRA CONSTRAINT
Use as much as possible “standard” EDA commodities!

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

.
m Logic Synthesis (Secure)

m Design Flow for secure ISE

m Quick note on Software

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Simplified Hardware Design Flow (ASIC)

Algorithm Design
C, Matlab, VHDL

RTL (Architecture) Design
Synthesizable HDL

Gate

X
%&OR y
y

Layout

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Let’s focus on Synthesis

RTL (Architecture) Design
Synthesizable HDL

Logic Synthesis

Gate Level

X
%D(OR y
y

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

A bit of history

A
m Few algorithms and tools existed in the 70’s

m First prototype synthesis tools in the early 80’s

m First logic synthesis companies in the late 80’s
-
Design Automation Conference (DAC) turned 51 years last
week: happy birthday!

A\

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Logic Synthesis

is the manipulation of logic specifications to create
logic models as an interconnection of logic primitives

Logic Synthesis
determines the gate level structure of a circuit

From G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill Higher
Education, 1994.

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Logic Synthesis Input and Output
INPUT:

m HDL Description

m Technological Library (area, timing, power)
m Synthetic Library (multipliers...)

m Constraints

m Gate Level Netlist
m Estimation of area, timing, power (!)
m Timing constraints

06 June 2014, Sibenik, Croatia

Typical Logic Synthesis Steps

State Minimization

two
State Encoding

three
Combinatorial Logic Minimization

four

Technology Mapping

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Is it sufficient for Security?

A
Paul Kocher, Joshua Jaffe, and Benjamin Jun,
“Differential Power Analysis”, in Proceedings of
Advances in Cryptology-CRYPTO’99, Santa

Barbara, California, USA, August 15-19, 1999.

(Cited by 4128)

06 June 2014, Sibenik, Croatia

Approach One
INPUT:

m HDL Description

m Technological Library (area, timing, power)
m Synthetic Library (multipliers...)

m Constraints

m DPA resistant Gate Level Netlist
m Estimation of area, timing, power (!)
m Timing constraints

06 June 2014, Sibenik, Croatia

Approach Two

m HDL Description

m Technological Library (area, timing, power)
m Synthetic Library (multipliers...)

m Constraints (limit the gates)

m Gate Level Netlist

“Cell Substitution’':
m Replace cells

m Reload in the tool for correct area and timing constraints

K. Tiri and |. Verbauwhede, A digital design flow for secure integrated circuits, IEEE TCAD,
2006

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

As a example of design for security, we have focused
on synthesis, and we have detailed two possible
approaches for synthesis of DPA resistant circuits

However

m f?ynthesis is only one step of the whole design
ow

m Security should be considered in every steps of
the of the design flow

m Doing DPA resistant synthesis alone is not
sufficient!

06 June 2014, Sibenik, Croatia

m Design Flow for secure ISE

m Quick note on Software

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Protect PRESENT with secure hardware

m Lightweight block cipher

m 4 bit S-box

m addRoundKey, sBoxLayer

// Calculate S-box (plaintext XOR key)

int PRESENT (int plaintext, int key) {

1 int result = 0; // initialize the result

2 plaintext = plaintext “key; // perform the xor with the key
3 result = S[plaintext]; // perform the S-box

4 return result; }; // return the result

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

What can | do?

Register File

Lvm][B8 4 [Ad4

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

What can | do?

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

What can | do?

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

What can | do?

Register File

IMM.

ALU

Memory

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

What can | do?

Register File

59 (44

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

What can | do?

Register File

Lvm][B8 4 [Ad4

Memory

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

What can | do?

Something easier?

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Protected / Non Protected Co-Design!

Register File

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Protected / Non Protected Co-Design!

Register File

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Protected / Non Protected Co-Design!

Register File

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Automatic design of DPA resistant ISE

identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

m Generate useful power traces?

A\

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

m Generate useful power traces?
m Measure the DPA resistance?

A\

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

m Generate useful power traces?
m Measure the DPA resistance?
m Countermeasure and its design flow?

A\

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

m Generate useful power traces?
m Measure the DPA resistance?
|
|

Countermeasure and its design flow?
Partition the algorithm?

A\

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

m Generate useful power traces?
m Measure the DPA resistance?
|
|

Countermeasure and its design flow?
Partition the algorithm?

A\

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Fast Simulation SPICE level

Simulate Complex Design at SPICE level (whole processor)

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Fast Simulation SPICE level
Simulate Complex Design at SPICE level (whole processor)

Simulated about 400 traces: approximately 20 hours!

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Fast Simulation SPICE level

Simulate Complex Design at SPICE level (whole processor)

Simulated about 400 traces: approximately 20 hours!

1 T T T T

"correct key'0 '
guessed key 0

0.8

0.6

0.4

0.2

Power or Correlation

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

A
m Results obtained in simulations are often very
different from the ones obtained from the real
silicon
m Check and evaluate if and to which extent
simulations results are matching the real
measures

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Needed “Basic Blocks”

Partition Protect
Sensitive / Sensitive —
Non Sensitive

m Generate useful power traces? v’
m Measure the DPA resistance?
|
|

Countermeasure and its design flow?
Partition the algorithm?

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

m Generate useful power traces? v’
m Measure the DPA resistance?
|
|

Countermeasure and its design flow?
Partition the algorithm?

A\

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Information Theory Metric

H[K|L] = — Z ZPr /Prl|k o] o Yoz el ol

m Add white noise
m Reduce the dimension using compression
m Compute the mutual information

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Partition Protect
Sensitive / Sensitive —
Non Sensitive

m Generate useful power traces? v’
m Measure the DPA resistance? v
|
|

Countermeasure and its design flow?
Partition the algorithm?

A\

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

m Generate useful power traces? v’
m Measure the DPA resistance? v
|
|

Countermeasure and its design flow?
Partition the algorithm?

A\

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Protected Logic styles

= WDDL
= iMDPL
= MCML

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

identify Partition Security
sensitive parts Sensitive / Evaluation
Non Sensitive

m Generate useful power traces? v’
m Measure the DPA resistance? v
|
|

Countermeasure and its design flow? v
Partition the algorithm?

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

m Generate useful power traces? v’
m Measure the DPA resistance? v
|
|

Countermeasure and its design flow? v
Partition the algorithm?

A\

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Algorithm partitioning tool

Register File

Lvm][B8 4 [Ad4

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Algorithm partitioning tool

Register File

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Algorithm partitioning tool

Register File

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Algorithm partitioning tool

Register File

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

identify Protect Security
sensitive parts Sensitive Evaluation

m Generate useful power traces? v’

m Measure the DPA resistance? v/

m Countermeasure and its design flow? v
m Partition the algorithm? v

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

The CMOS Design Flow

processor HDL code

CMOS
CMOS Library

Synth and
P&R D4

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

The Processor Customization

software processor HDL code
crypto.c

ISE HDL code

CMOS
CMOS Library
Synth and
P&R D 4

crypto_ISE.c

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

The Protected Design Flow

software processor HDL code
crypto.c

Protected
Library

Protected
Synth and
P&R

CMOS
CMOS | Library
Synth and 8

ISE HDL code

ISE Extractor

P&R D 4

crypto_ISE.c

101001
100001
100001

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

e Hybrid Design Flow

software
crypto.c

processor HDL code

ISE HDL code

ISE Extractor

crypto_ISE.c

CMOS

Protected
Library
Protected —)
Synth and
P&R
CMOS
Library

Synth and

P&R

54

Francesco Regazzoni

June 2014, Sibenik, Croatia

The Simulation Environment

software
crypto.c

processor HDL code

ISE HDL code

Protected

ISE Extractor

crypto_ISE.c

101001
100001
100001

Francesco Regazzoni

Synth and
P&R

Protected
Library
—

CMOS
Library

SPICE level

simulation
—

06 June 2014, Sibenik, Croatia

D 4

e Design Evaluation

processor HDL code

software
crypto.c
Protected
ISE HDL code Library
Protected —
ISE Extractor Synth and
P&R
S CMOS
CMOS Library
Synth and
P&R D 4
S

crypto_ISE.c

SPICE level
simulation

N—

Security
> Evaluaton

June 2014, Sibenik, Croatia

Francesco Regazzoni

Partitioning of the PRESENT algorithm S-box

Plain Text ‘ ‘ key ‘ ‘ Plain Text Plain Text ‘ ‘ key ‘ ‘ Plain Text
‘ shox ‘ ‘ shox ‘
‘ result ‘ ‘ result ‘ ‘ result ‘ ‘ result ‘
Full CMOS XORISE S-box ISE XOR + S-box ISE full ISE

Legend
non protected protected
logic logic

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Example of ISE and its Source Code

// Calculate S-box (plaintext XOR key)

int PRESENT (int plaintext, int key) {

1 int result = 0; // initialize the result

2 plaintext = plaintext “key; // perform the xor with the key
3 result = S[plaintext]; // perform the S-box

4 return result; }; // return the result

Francesco Regazzoni June 2014, Sibenik, Croatia

Example of ISE and its Source Code

// Calculate S-box (plaintext XOR key)

int PRESENT (int plaintext, int key) {

1 int result = 0; // initialize the result

4 return result; }; // return the result

XOR+S-box ISE // Calculate S-box (plaintext XOR key)

int PRESENT _ XOR+S-box-ISE(int plaintex) {

g g 1 int result = 0; // initialize the result

=] =]

< SBOX| =

g (std-cell 4 C:D, // instantiate the new instruction s-box(pt “key)
@ @

= =

2 Instr_1(plaintex, result);

3 return result; }; // return the result

Francesco Regazzoni June 2014, Sibenik, Croatia

Security Evaluation

35
sl
E
.5 251
T
£
S 2f
E
E
45 15—
£
—full CMOS
" |—xorISE
—S-box ISE
*[|=—XOR + S-box ISE
—full ISE
0 r————— S ———— | M,
10° 10° 10" N ? 10" 10° 10"

10 10
noise standard deviation

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Security Evaluation

35 —
sl i
E
g 25 B
g Treshold
£
o
£
E
45 15 —
1S
—full CMOS
! — XOR ISE
—S-box ISE
®* |=—XOR + S-box ISE 7
—full ISE
L T n M L Lol L P L
fo“ 10° 10" N ? 10" 10° 10'

10 10
noise standard deviation

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Total Time for experiments

PC Features:
m CPU: Intel(R) Core(TM)2 Quad CPU Q6700
m GHz 2.6
= Memory: 4 GB

Example program 470 clock cycles (boot+cipher)

SPICE Level Simulation (Synopsys Nanosim resolution: 1ps):
m Total simulated time 4700ns
m Total simulation time more or less 20 minutes
m 2.8s per clock cycle (full processor simulation core+ISE)
Security Evaluation
m 4 hours per partitioning

Full case study

m Worst case: 15 days on a single PC
m Parallelizable! Actual experiment: 2 days on 8 PCs

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

m Quick note on Software

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

m Generate useful power traces?
m Measure the DPA resistance?
|
|

Countermeasure and its design flow?
Partition the algorithm?

A\

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Real Measures on Microcontroller

m No need to simulate or emulate

m Power traces are obtained directly by measuring
with an oscilloscope the software running on the
microcontroller

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Needed “Basic Blocks”

Partition Protect
Sensitive / Sensitive —
Non Sensitive

m Generate useful power traces? v’
m Measure the DPA resistance?
|
|

Countermeasure and its design flow?
Partition the algorithm?

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

m Generate useful power traces? v’
m Measure the DPA resistance?
|
|

Countermeasure and its design flow?
Partition the algorithm?

A\

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Same as before....
Applied instruction by instruction!

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Partition Protect
Sensitive / Sensitive —
Non Sensitive

m Generate useful power traces? v’
m Measure the DPA resistance? v
|
|

Countermeasure and its design flow?
Partition the algorithm?

A\

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

m Generate useful power traces? v’
m Measure the DPA resistance? v
|
|

Countermeasure and its design flow?
Partition the algorithm?

A\

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Code Transformation

sbol r21,0xfd
1lds r23,708
sbeoi r21, 0xfd mov r2%,r23
14 r25,¥
----------- » |[1ds r23,708
subi rl8,0x4f mov rlB,r23
) 19,r23
Targets for Protection nev lér 26
Exampie (A) P
subi rl8&,0x4f
Protected Implementation
Example (A}
——————————— »-
Targets for Proteciion

Example (B) Protected Implementation
Example (B)

sco Regazzoni June 2014, Sibenik, Croatia

identify Partition Security
sensitive parts Sensitive / Evaluation
Non Sensitive

m Generate useful power traces? v’
m Measure the DPA resistance? v
|
|

Countermeasure and its design flow? v
Partition the algorithm?

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

identify Partition Protect Security
sensitive parts Sensitive / Sensitive Evaluation
Non Sensitive

m Generate useful power traces? v’
m Measure the DPA resistance? v
|
|

Countermeasure and its design flow? v
Partition the algorithm?

A\

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Transformation Target Identification

sbol r21l,0xfd

movw rl8,r2é

X | subi rl8,0xdf

/‘J Targets for Protection
sbei r21,0xfd 7 Exampie (A)
1d r2s,Y R
movw r18,:26
subl rl18,0xdf ~

N

Sensitive Paris S

.

N
.
E Y

Targetis for Protection
Example (B)

06 June 2014, Sibenik, Croatia

Francesco Regazzoni

identify Protect Security
sensitive parts Sensitive Evaluation

m Generate useful power traces? v’

m Measure the DPA resistance? v/

m Countermeasure and its design flow? v
m Partition the algorithm? v

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Overall Software Flow

Information Transformation
Code
Leakage Target .
/ o Transformation
Analysis Identification
sbei r21,0xfd
1lds r23,705
sbei r21,0xfd mov r25,r23
1d r25,¥
---------- > |[1as 23,705 |
/X subi r18,0x4f mov rl8,r23
L & Targets for Protection :ZZJS;E 6
sbei r21,0x£d sbei r21,0xfd L Example (A) subi rl8,0x4f
igv;fg . . ;ivzzii;‘ o6 o7 Protected Implementation
subi rl8,0x4f subi rl8,0x4f N Example (A)
Input Software Sensitive Parts \\
Implementation NS E]
* e - 5
Targets for Protection :l
Example (B) Protected Implementation
Example (B)
P. 73

June 2014, Sibenik, Croatia

cesco Regazzoni

Example on Software

Instruction - time mapping of unprotected implementation
1

[T © Y -
2 H &1 5| =] 2 |
5 SX %=

ool | S 0+ 1 g1 &8 8| & ']
g HE - S - -] S >
& V5 ¢ >

o8k S I 3 3 S H ! 4
2 H s 5| 28 o
» 13 @) £ =2

o7l B I]

Sensitivity
(Mutual information)

cesco Regazzoni June 2014

()
S
)
3
&
0
n
c
o
g
Q
£
v}
X
m

Instruction - time mapping of unprotected implementation

Instruction - time mapping of protected implementation

811821 MAOW

PIXO'6T4 1905

1X0'8TI 1ANS

€21'8T1 AOW

S0L'€21 SPI

'
'

'

1 £21'GZ1 Aow
'

1 S0L'€21 SP|
'

]

PIX0'T21 1905
(uonewsojur M)
Auanisuas

811821 MAOW

PIXO'6T4 1905

JX0'8T1 1ans.

921'8T1 MAOW

1
9|
8|

(uonewojur emInA)

Aunnisuas

622 ie24 1625 1628 1630 1632 1634 163 1638
Clock cycle

1620

Clock cycle

<
—
(=]
N
]
c
3
3

Security Evaluation

Sensitivity values for protected implementation
T T

[

o o
o ©

r ARK SB SR MC

o
3
T

o o
o o

I
~

Sensitivity
Mutual information)

0.3

~ 0.2

& L |

fi Il
500 1000 1500 2000 2500
Clock cycle

Francesco Regazzoni June 2014, Sibenik, Croatia

Conclusions and Tips

m Initial steps for power analysis are promising

m This is just the beginning...

PS: Never re-invent the wheel! J

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

Acknowledgments

A

m Paolo lenne, Alessandro Cevrero, Yusuf
Leblebici, Stéphane Badel, Johann Grof3schadl,
Ali Galip Bayrak, Axel Poschmann, Zeynep
Toprak, Marco Macchetti, Laura Pozzi, Christof
Paar, Frank Gurkaynak, Francois-Xavier
Standaert, Theo Kluter, Philip Brisk, Michael
Schwander, Thomas Eisenbarth

06 June 2014, Sibenik, Croatia

A
“There is beauty in what we do in EDA!”

Alberto Sangiovanni-Vincentelli, EDA Café - 2009

o'

Thank you for your attention!
mail: regazzoni@alari.ch

Francesco Regazzoni 06 June 2014, Sibenik, Croatia

	Motivations
	DPA Resistant Synthesis

